Hardness Testers

Kemet have partnered with EMCO-TEST, which manufacture a full suite of machines with the ability to test Brinell, Rockwell, Vickers and Knoop methods, from load ranges of 0.00025 – 3000Kgs. Their universally acclaimed ecos Workflow software is intuitive, easy to use and can include fracture measurement for carbides and ceramics as an option. The latest version of ecos Workflow also enables panoramic stitching which means large sample areas can be highlighted with extremely high quality images across multiple screens if needed.

With this new partnership comes a new purchasing model, Pay per Method (PpM). This offers the greatest possible flexibility and cost benefit, allowing the purchase of an advanced machine at a much lower cost. With PpM the cost is separated into 2 parts: The hardware (the actual hardness tester) and the software (ecos Workflow). Users, therefore, only pay for the hardness testing methods that they need, greatly reducing the cost of the solution whilst providing them with a machine that does everything they require of it. If additional methods are required/needed at a later date, these can be added by simply purchasing a licence code for the relevant method to be unlocked from the machine. This clever new method of pricing offers the benefit of a lower investment for the machine and the ability to upgrade its capability at any time should you need to.

Why Hardness Testing is important?

Hardness testing is an essential tool for analysis, distinguishing different materials, development and improvement of materials and technologies in the context of basic research in the fields of materials science, materials engineering and materials diagnostics. It determines the characteristic values that are of important for assessing the use of materials in industries (suitability of a material for a technically relevant part), for distinguishing between materials (in the case of material confusion) and for clarification of cases of damage (damage analysis).

DuraScan G5 - 0.00025 - 62.5 kgf

Maximum efficiency for your laboratory

vickers hardness tester

DuraVision G5 semi-automatic - 0.3-3000kgf

Precise hardness testing for the toughest requirements

universal hardness testing

DuraVision G5 Automatic - 0.3-3000kgf

Fully automatic serial testing: quickly and precisely

fully automatic hardness testing

DuraJet - 1kgf to 250kgf

Proven in harsh environments - since five generations

carbon and plastic hardness testing

DuraPro - 1-3000 kgf

Hardness testing modules for automated systems

hardness testing modules

N3A - 15-187.5 Kgf

High efficiency - low costs

rockwell hardness tester

Portable products - 15-187.5 Kgf

Proven hardness testers

portable harndess testing

How does a Hardness Tester work

Hardness is a measure of how mechanically resistant a material is to the mechanical penetration of another, harder body (indenter). Diamond is the hardest natural material so is used as an indenter. Methods with static application of the test force are predominantly used for testing the hardness of materials, whereby either the penetration size or depth of the indentation caused by an indenter is measured. A distinction is made with the static hardness testing methods between depth measurement methods and optical measurement methods. Depth measurement methods measure the residual depth of indentation left by the indenter.

Is Hardness Testing non destructive (NDT)

Dependant on the material and application being tested, hardness testing can be non-destructive. If you are doing a hardness test on raw materials like forgings or casting which will require further processing to remove indentation on material, it can be classed as Non-destructive testing (NDT) but if the same hardness testing is done on a critical turbine blade for aerospace NDT, this is considered destructive testing.

how does hardness testing work

Hardness Testing vs Impact Testing

Impact testing measures the material’s capacity to absorb energy when ruptured at high velocity. This gives an indication of the strength of the material and two methods are usually used for impact testing, Charpy or Izod.

Hardness testing assesses the impact of the metal or alloy to permanent indentation, and the depth or size of the indent is measured to determine a hardness value.

Machines by Hardness Testing Method





Plastic testing

Carbon testing
DuraScan (Vickers Hardness Tester)      
DuraVision 20 & 200 G5
DuraVision 250 G5
DuraVision 30 & 300 G5 (Brinell Hardness Tester)    
DuraVision 350 G5    
N3A (Rockwell Hardness Tester)      

Hardness Testing and its types. Which Hardness Test is best?


The residual depth of the indent made by the indenter is measured. The deeper a defined indenter penetrates at a defined test force into the surface of a specimen, the softer the tested material. The total test force is applied in two stages, this allows the impact of specimen surface roughness (grooves in the specimen) and measuring errors caused by backlash in indentation depth measurement to be eliminated.


An optical method, the size of indentation (the diagonals) left by the indenter is measured. In contrast, the depth of indentation caused by the indenter is measured in the depth measurement methods (only Rockwell is standardised). The larger the indent left by the indenter at a defined test force in the surface of a specimen, the softer the tested material. The pyramid-shaped indenter (with interfacial angle of 136°) is pressed into a specimen with a defined test load from 1 gf.


An optical method, involving a spherical indenter being pressed into a specimen, the size of indentation left by the indenter is measured. The larger the indent left in the surface of a workpiece (specimen) by the Brinell indenter with a defined ball diameter and a defined test force, the softer the tested material. In order to determine the HBW, the spherical, tungsten carbide indenter is pressed into a specimen with a defined test load (between 1 kgf and 3000 kgf). The results from the quotient of the applied test force (F in newtons (N)) and the surface area of the residual indent on the specimen after withdrawing the test force.


An optical method, involving a pyramid-shaped rhombic indenter (longitudinal edge angle 172.5°, transverse edge angle 130°) is pressed into a specimen with a defined test load (between 1 gf and 2 kgf). The larger the indent left by the indenter at a defined test force in the surface of a specimen, the softer the tested material.

all in one hardness tester

automated hardness testing